
April 21, 2004 1

© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

The Itanium®
Architecture

A
Technical
Overview

Thomas Siebold
Technical Consultant
Transition Engineering & Consulting
Business Critical Server Division
thomas.siebold@hp.com
Rev. 6.5

mailto:thomas.siebold@hp.com

© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

The Itanium®
Architecture

A
Technical
Overview

Thomas Siebold
Technical Consultant
Transition Engineering & Consulting
Business Critical Server Division
thomas.siebold@hp.com
Rev. 6.5

mailto:thomas.siebold@hp.com

April 21, 2004 4

Language and cultural differences
This is a ‚mobile phone‘

...but in other countries a
‚handy‘ is a

...but in Germay it is called a
,handy‘

April 21, 2004 5

Agenda

• Terminology
• Itanium® Roadmap
• The Itanium® Architecture

Terminology

April 21, 2004 7

Processor Architectures and
Implementations

Alpha Architecture

EV4
EV5

EV6

EV68

EV7

IA64 Architecture

Merced

McKinley
Itanium®2
processor

Madison
Itanium®2
processor

implementations

Itanium®

Intel Itanium® Architecture

Itanium® Processor Family
Alpha® Processor Family

April 21, 2004 8

Working Together

ARCHITECTURE

April 21, 2004 9

Continue Working Together

Intel

Alpha technology/resources enhance
Itanium®-based compilers/tools (SW)compilers/tools (SW)

Alpha technology/resources
accelerate and enhance Itanium® Architecture
processors/platforms (HW)processors/platforms (HW)

April 21, 2004 10

Intel® Itanium® Processor Family Roadmap

20042003 2005

Long term Itanium® Roadmap StrengthLong term Itanium® Roadmap Strength

Itanium® 2
Processor

1.5GHz, 6M; 1.4GHz,
4M; 1.3GHz, 3M

Itanium® 2
Processor

(Madison 9M)
>1.5GHz, 9M

Montecito
Dual Core, 24MB,
90nm Technology

MultiMulti--Processor (MP) CapableProcessor (MP) Capable

Tukwila
Multi Core,

Developed with
ex-Alpha team

Next Generation

Leading PerformanceLeading Performance

Leading $Leading $ // FLOPFLOP
Itanium® 2

Processor
1.4GHz, 1.5M, DP

LV Itanium® 2
Processor

1.0GHz, 1.5M, DP

Itanium® 2
Processor

>1.4GHz, DP

LV Itanium® 2
Processor

>1.0GHz, DP

Future
DP

Future
DP, Low Voltage

Dual Processor (DP) CapableDual Processor (DP) Capable

Future
DP

Future
DP, Low Voltage

Dual Processor (DP) CapableDual Processor (DP) Capable Lower PowerLower Power

PerformancePerformance Lowest Cost of OwnershipLowest Cost of Ownership

April 21, 2004 11

MP/DP CAPABLE

Delivering on the Architecture

2002 2003 2004 2005

Itanium® 2
Processor

1GHz
3MB iL3 cache

Itanium 2
Processor

(Madison**)
1.5GHz

6MB iL3 cache

Montecito**
Dual Core

Larger caches

130nm 90nm180nm

Low Voltage
Itanium 2

Processor
(Deerfield**)

1GHz
1.5MB iL3 cache

62W

Low Voltage
Itanium 2

Processor
(Deerfield
follow-on)

Montecito-
based

DP-ONLY

Itanium 2
Processor

(Madison9M**)
>1.5GHz

9MB iL3 cache

Tukwila**
Multi Core

Alpha Team

Future
Processors

future

**codename

All dates specified are target dates, are provided for planning purposes only and are subject to change.

April 21, 2004 12

Itanium
ItaniumItanium™™ ProcessorProcessor Itanium2 Itanium2 -- McKinley / McKinley / MadisonMadison

System BusSystem Bus
64 bits wide64 bits wide
133MHz/266 MT/s133MHz/266 MT/s
2.1 GB/s2.1 GB/s

WidthWidth
2 bundles per clock2 bundles per clock
4 integer units4 integer units
2 load or stores per clock2 load or stores per clock
9 issue ports9 issue ports

CachesCaches
L1 L1 –– 2X16KB 2X16KB -- 2 clock latency2 clock latency
L2 L2 –– 96K 96K –– 12 clock latency12 clock latency
L3 L3 -- 4MB external 4MB external ––20 clk20 clk

11.7 GB/s bandwidth11.7 GB/s bandwidth

AddressingAddressing
44 bit physical addressing44 bit physical addressing
50 bit virtual addressing50 bit virtual addressing
Maximum page size of 256MBMaximum page size of 256MB

System BusSystem Bus

CoreCore
800 MHz800 MHz

L3 CacheL3 Cache BSBBSB

System BusSystem Bus
128 bits wide128 bits wide
200MHz/400 MT/s200MHz/400 MT/s
6.4 GB/s6.4 GB/s

WidthWidth
2 bundles per clock2 bundles per clock
6 integer units6 integer units
2 loads 2 loads andand 2 stores per clock2 stores per clock
11 issue ports11 issue ports

CachesCaches
L1 L1 –– 2X16KB 2X16KB -- 1 clock latency1 clock latency
L2 L2 –– 256K 256K –– 5 clock latency5 clock latency
L3 L3 -- 3MB / 6MB 3MB / 6MB –– 12 clk12 clk

32 GB/s bandwidth32 GB/s bandwidth

AddressingAddressing
50 bit physical addressing50 bit physical addressing
64 bit virtual addressing64 bit virtual addressing
Maximum page size of 4GBMaximum page size of 4GB

CoreCore
1 GHz1 GHz

L3 CacheL3 Cache

System BusSystem Bus

Silicon ProcessSilicon Process

0.18 µm0.18 0.18 µµmm
0.13 µm0.13 0.13 µµmm
90 nm90 nm90 nm

20052005

Montecito
(Dual Core)

MontecitoMontecito
(Dual Core)(Dual Core)

20022002
Itanium® 2
Processor

(1 GHz, 3MB L3)

ItaniumItanium®® 22
ProcessorProcessor

(1 GHz, 3MB L3)(1 GHz, 3MB L3)

20032003
Itanium® 2
Processor

(Madison & Deerfield)
(1.5GHz, 6MB L3)

ItaniumItanium®® 22
ProcessorProcessor

(Madison & Deerfield)(Madison & Deerfield)
(1.5GHz, 6MB L3)(1.5GHz, 6MB L3)

Itanium® 2
Processor

(Madison 9M)
(>1.5GHz, 9MB L3)

ItaniumItanium®® 22
Processor Processor

(Madison 9M)(Madison 9M)
(>1.5GHz, 9MB L3)(>1.5GHz, 9MB L3)

20042004

April 21, 2004 13

Madison**

**codename

3rd Generation Itanium® Architecture Processor
130nm Process, 410M Transistors

1.5GHz Frequency
6 GFLOPS DP-F.P Peak

6MB integrated L3-Cache (48GB/s)
Pin-Compatible to Itanium® 2 Processor

100% Binary Compatible
Same Thermal Envelope

Low-Voltage Version (Deerfield**) in 2H2003
~1.3-1.5x faster than Itanium® 2

April 21, 2004 14

Itanium® 2 Processor Block Diagram

(schematic overview)

iL3 cache
3-6MB

(24-way
128B CL)

April 21, 2004 15

L1 instruction cache and
fetch/pre-fetch engine

128 integer registers 128 floating-point registers

L2
ca

ch
e—

qu
ad

po
rt

Quad-port
L1

data
cache
and
DTLB

Branch
units

branch & predicate
registers

Sc
or

eb
oa

rd
, p

re
di

ca
te

,
N

aT
s,

 e
xc

ep
tio

ns

A
LA

T

ITLB

B B B M M M M F F

IA-32
decode

and
control

Instruction
queue

Floating-
point
units

8 bundles

Register stack engine/re-mapping

11 issue ports

L3
ca

ch
e

Bus ControllerECC

ECC

Integer
and

MM units

I I

Branch
predication

ECC

ECC

ECC

ECC

ECC

Intel® Itanium2®-based
microarchitecture block diagram

April 21, 2004 16

Montecito**

**codename

5th Generation Itanium® Architecture Processor
90nm Process

Dual Enhanced Core per Die
High Frequency

12MB integrated L3-Cache per Core
Multi-Threading Support

Some few new Instructions
Low-Voltage Version as well

Target in 2005

All features and dates specified are targets provided for planning purposes only and are subject to change

April 21, 2004 17

Itanium2 Processor (“McKinley”)

221M FETs
421mm2

90+% of the transistors and
50+% of the die area are
devoted to cache and
cache support logic

Madison: ≈ 410M FET
Montecito: ≈ 1000M FET

19.5mm

21
.6

m
m

April 21, 2004 18

Intel Enterprise Micro-Architectures

64 GB64 GB

HyperHyper--ThreadingThreading
TechnologyTechnology

Performance via Megahertz

XeonXeon®® ProcessorProcessor
w/ 64w/ 64--bit Extensionsbit Extensions

6.4 GB/s6.4 GB/s

1 MB1 MB

2 2x Integer2 2x Integer
1 1x Integer, 1 1x Integer,
1 1 MMxMMx & SSE& SSE

2 2
FloatingFloating

PointPoint
3.8 GHz3.8 GHz

ItaniumItanium®® 2 Processor 9M2 Processor 9M

6.4 GB/s6.4 GB/s

1024 TB1024 TB

88

Memory AddressingMemory Addressing

1 2 3 4 5 6 7 8 9 1011

System BusSystem Bus

OnOn--die Cachedie Cache

Pipeline StagesPipeline Stages

OnOn--die Registersdie Registers

Execution UnitsExecution Units

Core FrequencyCore Frequency

Issue PortsIssue Ports

Performance via ParallelismPerformance via Parallelism

OnOn--die multidie multi--threadthread

264 Application Registers264 Application Registers
+ 64 Predicate Registers*+ 64 Predicate Registers*

6 Instructions / Cycle6 Instructions / Cycle

40 Registers40 Registers

HyperHyper--ThreadingThreading
TechnologyTechnology

3 Instructions / Cycle3 Instructions / Cycle

9 MB9 MB

Instructions / Instructions / ClkClk

6 Integer, 6 Integer,
3 Branch3 Branch

2 FP, 2 FP,
1 SIMD1 SIMD

2 Load and 2 Load and
2 Store2 Store

** IntelIntel’’s EPIC technology includes 64 singles EPIC technology includes 64 single--bit predicate registers bit predicate registers
to accelerate loop unrolling and branch intensive code executionto accelerate loop unrolling and branch intensive code execution

1.8 GHz1.8 GHz

1 2 3 4 5 6
Up to 6Up to 6

>20>20

April 21, 2004 19

Itanium is uniquely architected for
performance

X86 32b/64b XeonX86 32b/64b Xeon Itanium System featuresItanium System features Itanium Customer benefitsItanium Customer benefits

••24 to 40 general registers 24 to 40 general registers

••ThreadThread--level parallelism level parallelism
((HyperthreadsHyperthreads))

••264 application registers + 64 264 application registers + 64
predicate registerspredicate registers

••InstructionInstruction--level parallelism + corelevel parallelism + core--
level parallelism*level parallelism*

Efficient operation; high performance:Efficient operation; high performance:
••Reduced context switchingReduced context switching
••Efficient workload managementEfficient workload management
••Efficient clockEfficient clock--cycle utilizationcycle utilization

HardwareHardware--based parallelismbased parallelism Data and control speculationData and control speculation Improve effective memory latencyImprove effective memory latency

DualDual--core implementations*core implementations* DualDual--core + multicore + multi--core core
implementations*implementations*

••Higher performance densityHigher performance density

••Better system price/performanceBetter system price/performance

Performance driven by highPerformance driven by high--
clockclock--rates (>3GHz)rates (>3GHz)

Improved clockImproved clock--cycle utilizationcycle utilization Sustained performance advantage for Sustained performance advantage for
business business criticialcriticial applicationsapplications

Mature development tools and Mature development tools and
compiler optimizationcompiler optimization

Core hardware performance Core hardware performance
improved by future compiler improved by future compiler
optimizations optimizations

Installed systems get faster, even Installed systems get faster, even
without hardware upgradeswithout hardware upgrades

EPIC 64EPIC 64--bit Itanium processor architecturebit Itanium processor architecturex86 32x86 32--bit/64bit/64--bit Xeon processorbit Xeon processor
•• Optimized for best throughput performance in Optimized for best throughput performance in

large and complex technical and commercial large and complex technical and commercial
workloads workloads

•• Performance is much more than 64Performance is much more than 64--bitsbits

•• Optimized for cost/performance Optimized for cost/performance
performance in small to medium performance in small to medium
scale application and databasesscale application and databases

Itanium integrates the best of IA32 performance technology with
forward-looking architectural enhancements

April 21, 2004 20

Itanium® Architecture:
Optimized for Multi-Core

• Parallel execution leadership: only Intel
has all 3:
− Multi cores on same die
− Multi threads on same core
− Explicit Parallelism in each core

• EPIC*: inherent advantages for multi-
core, multi-thread
− Architecture: Parallelism + many

registers to keep data on-chip
− Core size: Smaller than IA-32, up to 2X

more cores per die on Tukwila (than on
IA-32)

Itanium® Processor family delivers >2X Moores’ Law performance Itanium® Processor family delivers >2X Moores’ Law performance

Performance*Performance*

* For Enterprise & Technical Computing* For Enterprise & Technical Computing
Application SegmentsApplication Segments

* EPIC is Itanium’s architecture “Explicitly Parallel Instruction Set Computing”

‘‘0404 ’’07+07+

MooreMoore’’s Laws Law

+30%+30%--50% 50%
in in ‘‘0404

+50%+50%--100% 100%
in in ’’07+07+

Xeon Platforms

Xeon Platforms
Itanium
Itanium

Platforms
Platforms

The Itanium®
Architecture

April 21, 2004 22

Explicitly Parallel Instruction Computing
Basic Ideas

• Static Hardware Design
−Compiler creates record of execution

• Instructions in bundles
−Machine plays record

• Distribute among execution units
−No runtime changes like out-of-order-excution

• High Scalability of ‚execution units‘
−Very Large Instruction Word (VLIW) concept
−Focus is parallelism

• 6 instructions in parallel (2 bundles per cycle)
−High number of execution units

April 21, 2004 23

compilercompiler implicitly
parallel

implicitly
parallel

hardware

...
...

...
...

execution units unused –
reduced efficiency

sequential
machine code

Traditional architecture

multiple execution
units

original
source
code

Itanium-
based

compiler

...
...

...
...

parallel
machine code

Itanium™ architecture

massive
resources

original
source
code

Itanium Architecture – Basic Ideas

Increased parallelization – more throughput

April 21, 2004 24

Traditional Architecture Limits
EPIC Solutions

Today’s Limit: number of registers on chip limits parallelism
Solution: quadruple registers from 32 to 128

Today’s Limits: complexity of multiple pipelines too great to allow effective on-chip
scheduling for parallel operation

Solution: explicit parallelism
Compiler handles Scheduling and communicates this to the chip

Today’s Limit: Large (and growing) memory latency

Solution: speculative loads

Today’s Limit: conditional and/or unpredictable branches

Solution: prediction and predication orchestrated by the compiler

April 21, 2004 25

Architecture Limits – EPIC Solutions

Today’s Limit: number of registers on chip limits parallelism
Solution: quadruple registers from 32 to 128 and increasing
addressing from 5 bits to 7

Today’s Limits: complexity of multiple pipelines too great to allow effective on-chip
scheduling for parallel operation

Solution: explicit parallelism
Compiler handles Scheduling and communicates this to the chip

Today’s Limit: Large (and growing) memory latency

Solution: speculative loads

Today’s Limit: conditional and/or unpredictable branches

Solution: prediction and predication orchestrated by the compiler

Increasing Instruction
Level Parallelism

April 21, 2004 27

Explicit Parallelism
• Instruction Level Parallelism (ILP) is the ability to execute multiple
instructions at the same time

• Explicitly Parallel Instruction Computing (EPIC) allows the
compiler or assembler to specify the parallelism

• Compiler specifies Instruction Groups, a list of instructions
with no dependencies that can be executed in parallel

• Instructions are packed in bundles of 3 instructions each
• Instruction bundle
• Two executed per cycle

• Massive resources on chip
• Large number of registers to avoid register contention

April 21, 2004 28

Instruction Format: Bundles & Templates

•Bundle (123 bits)
•Set of three instructions (41 bits each)

•Template (5 bits)
•Identifies types of instructions in bundle

•One of Integer, Memory, Branch, Floating, eXtended
•Identifies independent operations (“stops”) -> MM_F
•Defines execution units to be invoked executing the bundle
•Compiler can schedule functional units to avoid contention

April 21, 2004 29

Instruction Format:
Bundles & Templates

• Instruction types
− M: Memory
− I: Shifts and multimedia
− A: Integer Arithmetic and Logical Unit
− B: Branch
− F: Floating point
− L+X: Long (move, branch, …)

• Template encodes types
− MII, MLX, MMI, MFI, MMF
− Branch: MIB, MMB, MFB, MBB,BBB

• Template encodes parallelism
− All come in two flavors: with and without stop at end
− Also, stop in middle: MI_I M_MI

April 21, 2004 30

Explicitly Parallel Instruction Encoding

Program:

Instruction Groups:
•Explicit group stops
•No RAW or WAW dependencies

Instruction Bundles:
•3 Instructions and template
•Stops at the end or within

Instruction 2 (41 bits) Instruction 1 (41 bits) Instruction 0 (41 bits)
Template
(5 bits)

add r8=1, r8 fma f34=f33, f8, f1 ldfd f32=[r9], 8 .mfi

Bundle 16 byte == 128 bits

April 21, 2004 31

Instruction Dispersal, Itanium® Implementation

instruction
stream

B B BM M MIII I F

Dispersal
Window

B2 B1 B0 F1 F0 I0I1 M/IOM/I1

Execution Units

M

Flexible Issue Capability

Up to 6 instructions executed per clock

April 21, 2004 32

Explicitly Parallel Instruction Computing
EPIC

S2 S1 S0 T

MEM MEM INT INT FP FP B B B

128-bit instruction bundles from I-cache

Fetch one or more bundles for execution
(Implementation, Itanium® takes two.)

Processor

functional units

Try to execute all instructions in
parallel, depending on available
units.MEM MEM INT INT FP FP B B B

Retired instruction bundles

April 21, 2004 33

Execution Units

Memory
Integer
FP
Branch

0 MII

1 MII;

2 MI;I

3 MI;I;

4 MLX

5 MLX;

8 MMI

9 MMI;

10 M;MI

11 M;MI;

12 MFI

13 MFI;

14 MMF

15 MMF;

16 MIB

17 MIB;

18 MBB

19 MBB;

22 BBB

23 BBB;

24 MMB

25 MMB;

28 MFB

29 MFB; M F

B

M I I

M I I

M I I

M I I

M I I

M I I

M M I

M M I

M M I

M M I

M F I

M F I

M M F

M M F

M I B

M I B

M B B

M B B

B B B

B B B

M M B

M M B

M F

B

Defined templates

M

F

I

T

Memory Unit
decode

FP Unit
decode

Integer Unit
decode

From I-cache

MFI bundle

Branch Unit
decode

April 21, 2004 34

Itanium® 2 Dispersal Matrix
MII MLI MMI MFI MMF MIB MBB BBB MBB MFM

MII

MLI

MMI

MFI

MMF

MIB*

MBB

BBB

MMB*

MFB*

* hint in first bundle Possible Itanium® 2 full issue
Possible Itanium® processor and Itanium® 2 full issue

Itanium® 2 allows more compiler dispersal options

April 21, 2004 35

Instruction Groups
• Instruction groups:
• Set of instructions
• No dependencies (raw, waw) within group
• May execute in parallel
• The processor executes as many instructions per

instruction group as possible, based on its resources
• Must contain at least one instruction (no upper limit)
• Instruction groups are indicated by cycle breaks (;;)

April 21, 2004 36

Instruction groups and bundles

Instructions within a group may not
have any register dependencies within
the group.

;; indicates the end of a group.

ld8 r5 = [r7]
sub r1 = r2, r3
add r10 = r20, r21 ;;
add r1 = r1, r5 ;;
st8 [r7] = r1

Instruction bundles

{
.mii // template
ld8 r10, [r5] // slot 0, Memory
add r1 = r2, r3 // slot 1, Integer
add r4 = r5,r6 // slot 2, Integer

}

Instructions are fetched and
executed in bundles.

April 21, 2004 37

Instruction groups and bundles
Itanium® and Itanium2® fetch 2 bundles at a time for execution.
They may or may not execute in parallel.

Handwritten code

instr
instr
instr ;;
instr
instr ;;
instr
intsr
instr
instr
instr ;;
instr
instr ;;
instr
…

instr instr instr tmpl
instr instr instr tmpl
instr instr nop tmpl
instr nop nop tmpl
instr instr nop tmpl
instr instr nop tmpl
intsr instr instr tmpl
…

instr instr instr tmpl
instr instr instr tmpl

Code generator

Instruction bundles

Fetch
Execution

Forgetting end-of-group
may be fatal:

add r1 = r1, r5 ;;
st8 [r7]= r1

Code generator creates bundles,
possibly including nops.

Can the bundle pair
Execute in parallel ?

There are two difficulties:
1) Finding instruction triplets matching the defined templates.
2) Matching pairs of bundles that can execute in parallel.

April 21, 2004 38

Massive On Chip Resources
• Several register files visible to the programmer:

BR7

BR0

Branch Registers
63 0

96 Framed, Rotating

GR1

GR31
GR32

GR0
NaT

32 Static

0

Integer Registers

63 0

Predicate
Registers

PR1

PR63

PR0

PR15
PR16

48 Rotating
16 Static

96 Rotating

FR1

FR31

FR127

FR32

FR0

32 Static

+ 0.0

F.P. Registers

81 0

+ 1.0
1

Improving
Branch Handling

April 21, 2004 40

What is the problem ?
• Traditional CPUs:

• Branch-prediction is used to predict the most likely set of
instructions

• Correct branch prediction keeps the execution pipelines full
• A mispredicted branch flushes the pipeline with a large penalty

• Itanium® architecture improves branch handling:
• Provide a way to minimize branches using predicates
• Provide support for special branch instructions

− counted loop: br.ctop, br.exit
− While loop: br.wtop, br.wexit
−

April 21, 2004 41

Branch Handling
• Predication
−Conditional execution of instructions
−When the predicate is true, the instruction is executed
−When it is false, the instruction is treated as a NOP

• Predication converts a control dependency into a
data dependency

• Predication eliminates branches in the code

April 21, 2004 42

Predication
• Traditional code:

if (a>b)
c = c + 1

else
d = d * e + f

• Avoid branch by using predicated code
p1, p2 = compare(a>b)
if (p1) c = c + 1
if (p2) d = d * e + f

− Predicate p1 set to 1 if compare is true, and to 0 if it
evaluates to false

− p2 is the complement of p1

April 21, 2004 43

Predication
Before:
• Instructions c = c + 1 and d = d * e + f are

control dependant on a<b

After:
• Instruction are data dependant:

− Values of p1 and p2
− They determine execution
− The branch is eliminated

April 21, 2004 44

Predication

Y = 3

br

Y = 4

br

Cmp a,b

then

else

Y = 3 Y = 4pT

Cmp a,b pT, pF

pF

Traditional
Architecture

Itanium® Architecture

Only one ‘branch’ will have a valid
predicate and be executed.

Jump END

Jump NEQ

April 21, 2004 45

Predication
• predication provides the ability to conditionally execute

instructions based on computed true/false conditions

avoids branches
predicated instruction either completes or is dismissed (no ops)
predicate registers are set by compare/test instructions

Typical Optimized IPF

falsetrue
branch.eq (r1,r2)

instr 2
instr 3 instr 5

instr 4

(p1,p2)<-cmp(r1,r2)

if (p1) instr 3
if (p2) instr 4

if (p2) instr 5

if (p1) instr 2

April 21, 2004 46

IPF Instructions (cont)
• Instruction style is “(Pn) opcode target(s)=source(s)”

− Example:
(p4) cmp.eq p7,p12 = r37, r52
(p7) br label1
(p12) br label2

− First instruction only:
• P4 controls whether or not the results are kept or discarded
• the result registers are predicate registers P7 and P12
• R37 is compared for equality with R52

• If equal: P7 is set to 1 and P12 is set to 0.
• If not equal: P7 is set to 0 and P12 is set to 1.

− Combination of three instructions show how an if-then-else might be
coded.

Reducing
Memory Access Cost

April 21, 2004 48

Reducing Memery Access Cost
• Itanium® architecture eliminates many memory accesses

through:
• large register files to manage work in progress
• better control of the memory hierarchy (cache hints)

• Itanium® architecture reduces remaining memory accesses
by:

• moving load instructions earlier in the code
− Data speculation - advance a load before a possible data dependency
− Control speculation – speculative load before its guarding branch

• -> allows early execution of loads to hide latency
• -> enables the processor to bring in the data in time
• -> avoids stalling the processor

April 21, 2004 49

Data Speculation

• allows early execution of loads to hide latency

• advance load before a possible data dependency (load
before store)

• speculative load before a branch that guards it

Memory latency can be
responsible for 60% or
more of processor stalls

April 21, 2004 50

Advanced and Speculative loads

…
...
...
…
...

X = X + 1
IF (X == 0) Y = Y + 1
...

Load X advanced load

Load Y speculative load

April 21, 2004 51

Data Speculation

• allows early execution of loads to hide latency
• advance load before a possible data dependency (load

before store)

store
load store

load.a

chk.a

reschedule

recovery

optimized IPFtypical

recover

support for data speculation
ALAT (advanced load address table) – hardware structure that
contains information about outstanding advanced loads
advanced loads: ld.a
check loads: ld.c
advance load checks: chk.a
speculative advanced loads: ld.sa

Latency can be
responsible for 60% or
more of processor stalls

April 21, 2004 52

Control Speculation
• allows early execution of loads to hide latency
• speculative load before a branch that guards it

chk.s

load.s
branch

branch
load

reschedule

recovery

optimized IPFtypical

recover

support for control speculation
NaT (Not a Thing) bit – 65th bit of GR, set on incorrect speculation
instead of faulting
NaT bit propagated in computations
speculation check: chk.s
speculative load: ld.s

speculation hides memory latencyspeculation hides memory latency

April 21, 2004 53

Massive Memory Resources
• Physical memory

− Full implementation will address 16 EB of physical
memory (264)
• 16,000,000,000GB

− Itanium® architecture microprocessor has 44-bit
address bus
• 16TB (16,000GB) physical memory addressable

− Itanium2® architecture microprocessors have 50-bit
address bus

• Virtual memory
− Itanium® architecture microprocessor uses 50-bits
− Itanium2® architecture microprocessors uses 64-bits

Supporting
Modular Code

April 21, 2004 55

Procedure Call Overhead
• Modular programs create more overhead

− Programs tend to be call intensive
− Register space shared by caller and callee
− Call/Returns require register save/restores
− Frequent memory access
− Limitations due to resource shortage

• Itanium® solution
− Massive register resources

• Renaming, rotating
• Integer registers stackable

− Register Stack Engine (RSE)
− Eliminates memory accesses
− Allows to allocate local registers dynamically

April 21, 2004 56

Register Stack
• The general register stack is divided

into two subsets:
• Static: 32 permanent registers (r0-

r31)
− visible to all procedures
− Used for global variables

• Stacked: 96 other registers are like a
stack
− procedure code allocates up to 96

registers for a frame
− previous frame is hidden
− first register is renamed to logical register

r32
− small frames eliminate/reduce

saving/restoring registers to/from
memory

Procedure A Procedure B

in

inout
local

local

Static

Stacked

April 21, 2004 57

Register Stack Engine (RSE)
• When a procedure is called

− New frame of registers is made available
− Caller’s register content remain in registers,

invisible and inaccessible to called procedure
− If deep nesting exhausts physical registers the

RSE will save contents of hidden registers to
memory to free up resources

− On return to caller, caller’s register content
automatically restored

• RSE works in background, utilizing unused
memory bandwidth

• Activity not visible to application programs

April 21, 2004 58

Procedure Call Overhead
Traditional Itanium® Architecture
Procedure A Procedure A
call B call B

Procedure B Procedure B
save current register state alloc, no save!
... ...
restore previous register state no restore! (remap)

return... return

April 21, 2004 59

Register Stack Engine (RSE)

0

31

0

31

0

31
(Inputs)

Local

0

31
32

32+solA-1
Outputs

32+sofA-1

(Inputs)

Local

32

32+solA-1
32 32

Local

Outputs32+sofA-1Outputs (Inputs)

Outputs
32+solB-1

32+sofB-1

CALL ALLOC RETURN

A before
call to B

B immediately
after call from A

B after
alloc

A after return
from B

sol – size of locals
sof – size of stack frame

April 21, 2004 60

Loop Optimization Overhead
• Enhance loop performance:

− Done by unrolling loops
− Causes code expansion
− Prologue/epilogue add to code size

• Itanium® solution
− Software pipelining
− Architecture support

− Minimal prologue/epilogue code
− Predication
− Loop control registers (LC, EC)
− Loop branches (br.ctop,
br.wtop)

April 21, 2004 61

Software Pipelining

Sequential Loop

Load

Store

Compute

Time

Software-Pipelined Loop
Loop

Iterations

Epilogue

Kernel

Prologue

Time

•Multiple iterations execute in parallel
•ILP Maximized
•Different iteration stages execute in parallel
•Execution load is balanced

April 21, 2004 62

Software Pipelining
iteration
1

iteration
2

iteration
3

iteration
4

iteration
5

cycle

ld4 X

ld4 X+1

add ld4 X+2

st4 add ld4 X+3

st4 add ld4 X+4

st4 add X+5

st4 add X+6

st4 X+7

Prolog

Epilog

April 21, 2004 63

Architecture Limits – EPIC Solutions

Today’s Limit: number of registers on chip limits parallelism
Solution: quadruple registers from 32 to 128 and increasing
addressing from 5 bits to 7

Today’s Limits: complexity of multiple pipelines too great to allow effective on-chip
scheduling for parallel operation

Solution: explicit parallelism
Compiler handles Scheduling and communicates this to the chip

Today’s Limit: Large (and growing) memory latency

Solution: speculative loads

Today’s Limit: conditional and/or unpredictable branches

Solution: prediction and predication orchestrated by the compiler

April 21, 2004 64

Itanium(r) Achitecture Training

April 21, 2004 65

Itanium® Architecture Training
The following classes can be taken online or can be

downloaded:
−Getting Software Ready for Intel® Itanium®

Architecture
− Introducing the Intel® Itanium® Architecture
−Using the Intel® Itanium® Processor Instruction

Set

• Intel(r) Software College
− https://shale.intel.com/softwarecollege/CourseCatalog.

asp?CatName=PROCESSORS

https://shale.intel.com/softwarecollege/CourseDetails.asp?courseID=16
https://shale.intel.com/softwarecollege/CourseDetails.asp?courseID=16
https://shale.intel.com/softwarecollege/CourseDetails.asp?courseID=13
https://shale.intel.com/softwarecollege/CourseDetails.asp?courseID=158
https://shale.intel.com/softwarecollege/CourseDetails.asp?courseID=158
https://shale.intel.com/softwarecollege/CourseCatalog.asp?CatName=PROCESSORS
https://shale.intel.com/softwarecollege/CourseCatalog.asp?CatName=PROCESSORS

April 21, 2004 66

Transition slide
headline text
goes hereQuestions ?

	The Itanium® ArchitectureA Technical Overview
	The Itanium® ArchitectureA Technical Overview
	Language and cultural differences
	Agenda
	Terminology
	Working Together
	Continue Working Together
	Intel® Itanium® Processor Family Roadmap
	Itanium
	Itanium® 2 Processor Block Diagram
	Intel® Itanium2®-based microarchitecture block diagram
	Itanium2 Processor (“McKinley”)
	Intel Enterprise Micro-Architectures
	Itanium is uniquely architected for performance
	Itanium® Architecture: Optimized for Multi-Core
	Explicitly Parallel Instruction Computing Basic Ideas
	Itanium Architecture – Basic Ideas
	Traditional Architecture LimitsEPIC Solutions
	Architecture Limits – EPIC Solutions
	Explicit Parallelism
	Instruction Format: Bundles & Templates
	Explicitly Parallel Instruction Encoding
	Instruction Dispersal, Itanium® Implementation
	Itanium® 2 Dispersal Matrix
	Instruction Groups
	Massive On Chip Resources
	What is the problem ?
	Branch Handling
	Predication
	Predication
	Predication
	Predication
	IPF Instructions (cont)
	Reducing Memery Access Cost
	Data Speculation
	Data Speculation
	Control Speculation
	Massive Memory Resources
	Procedure Call Overhead
	Register Stack
	Register Stack Engine (RSE)
	Procedure Call Overhead
	Register Stack Engine (RSE)
	Loop Optimization Overhead
	Software Pipelining
	Software Pipelining
	Architecture Limits – EPIC Solutions
	Itanium(r) Achitecture Training
	Itanium® Architecture Training
	Transition slide headline textgoes here

